
Preventive Model-based Verification and
Repairing for SDN Requests

Igor Burdonov1, Alexandre Kossachev1, Nina Yevtushenko1,2, Jorge López3,4,
Natalia Kushik3, and Djamal Zeghlache3

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

2 National Research University Higher School of Economics, Moscow, Russia
3 SAMOVAR, CNRS, Télécom SudParis, Institut Polytechnique de Paris, Évry,

France
4 Airbus Defense and Space, 1 Boulevard Jean Moulin, Élancourt, France
{igor,kos,evtushenko}@ispras.ru, jorge.lopez-c@airbus.com,

{natalia.kushik,djamal.zeghlache}@telecom-sudparis.eu

Abstract. Software Defined Networking (SDN) is a novel network man-
agement technology, which currently attracts a lot of attention due to
the provided capabilities. Recently, different works have been devoted to
testing / verifying the (correct) configurations of SDN data planes. In
general, SDN forwarding devices (e.g., switches) route (steer) traffic ac-
cording to the configured flow rules; the latter identifies the set of virtual
paths implemented in the data plane. In this paper, we propose a novel
preventive approach for verifying that no misconfigurations (e.g., infinite
loops), can occur given the requested set of paths. We discuss why such
verification is essential, namely, how, when synthesizing a set of data
paths, other not requested and undesired data paths (including loops)
may be unintentionally configured. Furthermore, we show that for some
cases the requested set of paths cannot be implemented without adding
such undesired behavior, i.e., only a superset of the requested set can
be implemented. Correspondingly, we present a verification technique
for detecting such issues of potential misconfigurations and estimate the
complexity of the proposed method; its polynomial complexity highlights
the applicability of the obtained results. Finally, we propose a technique
for debugging and repairing a set of paths in such a way that the cor-
rected set does not induce undesired paths into the data plane, if the
latter is possible.

Keywords: Software Defined Networking · Verification · Repairing ·
Graph paths.

1 Introduction

Traditional networks have currently evolved. One of the technologies that con-
tributes to this evolution is the Software Defined Networking (SDN) paradigm,
that allows implementing various data paths utilizing the common resources and

ar
X

iv
:1

90
6.

03
10

1v
3

 [
cs

.N
I]

 2
1

Se
p

20
20

2 I. Burdonov et al.

control principles. When using SDN technology the network entities are managed
through the controller that works independently of the network equipment and
is ‘responsible’ for pushing the necessary rules to the forwarding devices (e.g.,
switches) [16]. As a result, SDN provides agile controllability and observability
by separating the control and data planes.

To guarantee the requested network is configured correctly, SDN components
and compositions need to be thoroughly tested and verified. However, even if
the rules are pushed to each switch as requested by the controller, additional
verification of the data plane still needs to be performed. For example, one
needs to verify i) the absence of loops and packet loss, as well as ii) the security
and access control issues. The works on such data plane verification have been
presented before (see Section 2), moreover, we note that these challenges have
been largely investigated in the past decade. Nevertheless, existing approaches
often rely on a current network configuration, i.e., the rules have been already
pushed to the switches while in this paper, we claim that an efficient verification
can be performed before. In particular, we propose to analyze the paths to be
configured as it is highly probable that the loops and/or access control issues
are not induced through the actual path implementation but rather arise from
the conflicting user requests.

More precisely, in this paper, we propose a novel preventive model-based
approach for verifying certain network properties. Indeed, given the set of paths
to be implemented on the data plane for connecting appropriate hosts, if this set
is not consistent or can lead to potential loops then its implementation should
be avoided. Let P be a set of paths which should be implemented on the data
plane for packets of a given traffic type. The set P should be ‘inspected’ before
its actual implementation, first to assure that all the paths of the set P are edge
simple (proves the correctness of the path definition) and second whether it is
possible to precisely implement the set P on the data plane or there will be
additional (unintended) paths implemented? In the latter case, it can happen
that there are implemented paths which are not edge simple and thus, a loop
for packets of a given traffic type can occur. In this paper, we answer the above
question by establishing the corresponding necessary and sufficient conditions.
In fact, we show that given a traffic type which is defined by the packet headers
(packets with the same traffic type follow the same data paths) and a set of
(requested) paths P , the implementation of P can induce new paths appearing
on the data plane, and moreover, if all the paths of P are edge simple (no loops
should occur) it does not guarantee the absence of potential cycles on the data
plane. Indeed, the criterion for the absence of those relies on the property of the
set P to be arc closed (see Section 4). Such criterion as well as the preventive
verification method on its basis, form the main contributions of the paper. Note
that, our preliminary experimental results with rather small topology built over
the Onos controller and Open vSwitches confirm the necessity of such preventive
verification; otherwise, the packets generated at a certain host can go into infinite
loop and can simply flood the network. Together with the data path verification
approach we also discuss the possibility of an automatic debugging and repairing

Preventive Model-based Verification and Repairing for SDN Requests 3

of a set P that did not pass the verification. The latter contribution of the paper
is a technique for the modification of the set of paths P in such a way, that
the resulting set of paths becomes arc closed (and thus safe to implement). For
both, verification and debugging / repairing approaches their related complexity
is discussed.

The structure of the paper is as follows. Section 2 briefly summarizes the
related work in the area of SDN data plane verification w.r.t. various network
properties. Section 3 presents the necessary background. Section 4 discusses the
possibility of inducing undesired paths on the data plane that can cause, for
example, infinite cycles. Correspondingly, the proposed preventive verification
approach for the set of paths P , together with the criterion for the absence
of undesired links and related complexity analysis is presented in Section 5.
Automatic debugging and repairing of the set of paths for which the verification
failed, is proposed in Section 6. Section 7 concludes the paper.

2 Related work

A number of (recent) works have been devoted to verification and testing of
an SDN data plane and related data paths configured on the data plane. Note
that these works can be intuitively split into several groups. The first group fo-
cuses on the application of formal verification and model checking approaches to
data plane verification or forwarding devices in isolation; in this case, classical
networks (not necessarily SDN) with related access control, security and other
network properties are considered. Approaches of the second group tend to fo-
cus on active testing of a data plane via corresponding traffic generation and
monitoring of the forwarding behavior of switches of interest. There have been
also a number of attempts of the application of model based testing techniques
to various SDN components and in particular, to the data plane.

As techniques of the first group generally employ formal verification and
model checking strategies, they mostly differ in the underlying formalism uti-
lized for describing the specified behavior and related properties. For that matter,
there have been considered Boolean functions and their satisfiability [11], sym-
bolic model checking / execution and SMT solving [4, 7] as well as algebra of
sets [3]. Several properties of the data plane can be checked in this case, such
as for example, reachability issues, absence of loops, etc. When verifying the
behavior of forwarding devices in isolation, symbolic execution has been also
employed. In fact, the problem can be solved via corresponding static analy-
sis when the network device is implemented in the programming language (for
example, P4) [18].

Approaches of the second group have been largely investigated, for example
in [6, 8, 15, 21]. In automatic traffic generation, the packets / flows to be sent
through the switches are generated at hosts in an active mode such that specific
network failures can be captured when monitoring the data plane.

Existing model based testing techniques either consider a given SDN compo-
nent, such as for example an SDN enabled switch [10,19] or an SDN framework

4 I. Burdonov et al.

as a whole can be tested [2,20] and in this case, an appropriate fault model can
be used / proposed.

Note that the authors are not aware of the (preventive) verification ap-
proaches applied to SDN when the specification is given as a set of paths to
be implemented. Such verification should be performed beforehand, i.e., before
the rules are pushed to the switches and at the same time, further network up-
dates should be also verified not to bring undesired paths. On the other hand,
we are not aware of any works devoted to data paths repairing in the context of
SDN, and in this paper, we address the aforementioned challenges.

3 Preliminaries

Software Defined Networking (SDN) is a networking paradigm that consists in
separating the control and data plane layers [13]. With a centralized SDN con-
troller, SDN applications can automatically re-configure the SDN data plane.
SDN-enabled forwarding devices (the components of the data plane) steer (route
/ forward) the incoming network packets based on so-called flow rules installed
by the SDN applications (through the controller). A flow rule consists of three
main (functional) parts: a packet matching part, an action part and a location /
priority part. The matching part describes the values which a received network
packet should have for a given rule to be applied. The action part states the
required operations to perform to the matched network packets, while the loca-
tion / priority part controls the hierarchy of the rules using tables and priorities.
Finally, it is important to note that there exists a special output port for a flow
rule, the controller port; when a packet is sent to the controller, the controller
queries the SDN applications to decide the actions to perform to the packet; as
a result, the controller may install new flow rules, drop or forward the packet
to a specific port. In this paper, we focus on the resulting data paths (produced
by the rules installed at the forwarding devices); more precisely, we focus on the
analysis of such data paths and the potentially unintended additional data paths
resulting from a configuration. To better outline the working principles of SDN
rules, consider the following rules installed at a given switch:

ID Priority TCP DST PORT DST IP Action
1 5000 10.0.1.22 OUT(2)
2 5001 22 OUT(3)
3 6000 10.0.1.23 CTRLLR

To simplify our explanation, and without loss of generality we consider that
the rules are installed in the first table of the SDN-enabled switch (table 0). TCP
DST PORT is the TCP destination port and DST IP is the destination IP (for
further information on basic networking concepts the reader can give a look at
[9]). A network packet with the destination IP address 10.0.1.22 and destination
TCP port 22 will be forwarded to the output 2 (due to the higher priority
of rule 1). Likewise, a network packet with destination IP address 10.0.1.21
and destination TCP port 22 will be forwarded to port 3 (the highest priority

Preventive Model-based Verification and Repairing for SDN Requests 5

rule matching the network packet). Finally, if a network packet going to the
destination IP address 10.0.1.23 (and the destination TCP port not equal to 22)
arrives, the switch sends this packet to the controller, asking for the action to
take with the packet, the controller may reply with a new rule, drop the packet
or forward it to a set of ports.

In this paper, the SDN resource topology (data plane) or resource network
connectivity topology (RNCT) is represented as an undirected graph G = (V,E)
where E ⊆ {{a, b}|a ∈ V & b ∈ V } without multiple edges and loops. The set V
of nodes represents network devices such as hosts and switches; the set H is the
set of all hosts while S is the set of all switches, V = H ∪S, H ∩S = ∅. Edges of
the graph (the set E) represent connections (links) between two nodes in G and
each link can transmit packets in both directions. Correspondingly, given an edge
between nodes a, b ∈ E, we write (a, b) if a packet is transmitted from a to b and
(b, a) when it is transmitted from b to a. We reasonably assume that each host
is connected exactly with one switch, i.e., ∀h ∈ H(deg(h) = 1) & ∃s ∈ S((h,
s) ∈ E) where deg(x) is the degree of the node x. Without loss of generality we
also assume that G is connected; otherwise, each (connected) component can be
treated as a separate network.

In the SDN architecture, the instructions for the data plane for packets for-
warding are provided by SDN applications through an SDN-controller. These
instructions (flow rules) produce so-called data paths, sets of paths which should
carry on corresponding packets, i.e., those paths can have appropriate param-
eters according to which the packets are then forwarded; in other words, each
packet belongs to an appropriate traffic type. When a forwarding rule is installed
on an SDN-enabled switch, a data link from and to other node (-s) adjacent to the
switch is created, i.e., a packet accepted from adjacent nodes (hosts or switches)
is forwarded to a (corresponding) set of ports that are connected to appropriate
ports of other nodes.

A host can generate packets that are forwarded to a single switch connected
with this host. A switch can only forward packets; moreover, in this paper, we
assume that a switch does not modify the packet header, i.e., the packets traffic
type and payload are not changed through the network. A switch can forward
a packet to several ports, and the set of ports depends on the traffic type as
well as on the input port from which it arrives. Every node a of the graph G
(a host or a switch) has a set of ports which can be input as well as output
and each such port corresponds to some edge at the node a and vice versa,
each edge at the node a is associated with a corresponding port. Thus, there
is one-to-one correspondence between edges at the node a and the set of its
ports. Since G has no multiple edges nor node (self) loops there is one-to-one
correspondence between the set of ports of a and the set of neighbor nodes of a.
Therefore, without loss of generality, we can use a neighbor node instead of the
port number.

A path π is a sequence of neighboring nodes of G, i.e., a path is a sequence5

of nodes such that there is an edge between neighboring sequence nodes. A path

5 As usual, we use ‘·’ for denoting the sequence concatenation.

6 I. Burdonov et al.

π = x1 · . . . ·xn starts at the node x1, is finished at the node xn, has length n−1,
and passes via an arc (xi, xi+1) for i ∈ {1, . . . , n− 1}. The path is edge simple if
it passes via each arc at most one time: (xi, xi+1) = (xj , xj+1) =⇒ i = j. The
path is node simple if all its nodes are pairwise different, i.e., xi = xj =⇒ i = j.
A path is complete if its head and tail nodes are hosts and there are no hosts as
intermediate nodes.

An SDN application configures sets of paths (through the controller) which
should transport corresponding packets, i.e., those paths can have appropriate
parameters (which define their traffic type) according to which the packets are
then forwarded [17]. The flow rules of a switch can be written as a mapping of
input ports into subsets of output ports. If the subset of output ports is empty
then the switch will ‘drop’ a packet that arrived at a corresponding input port.

In this paper, we assume that an SDN application configures the switch tables
in such a way that each rule determines the set of output ports depending on the
traffic type and an input port. As G has no multiple edges it implies that a rule
determines the set of neighboring nodes where a packet has to be forwarded. We
also assume that all the switches have in their tables only the information sent
by the controller, i.e., no default rules or external interfaces are considered. For
the sake of simplicity and in fact, without loss of generality for our purpose, we
assume that all the rules have the same priority. For packets belonging to the
same traffic type, we can consider every rule as a triple (a, s, b) ∈ V × S × V
where a and b are neighbors of s. This rule says that getting a packet with
the corresponding traffic type from neighbor a, switch s should send it to the
neighbor b. If there are several rules which differ only in the neighbor b, then
switch s performs cloning, i.e., the incoming packet is transmitted to several
neighbors. The set of rules of all switches is called configuration (for the given
traffic type).

4 Implementing the given set of complete paths

4.1 Analysis of paths that can be implemented on the data plane

The set of complete paths that should be implemented on the data plane is
based on a user request or predefined configuration (by a given application).
Correspondingly, before setting a switch configuration according to a set of paths,
it would be useful to verify whether a given set of paths can be eventually
implemented. Note that hereafter we assume that the requested set of paths P
does not contradict the RNCT G. A trivial check that P forms a sub-graph of
G can be performed beforehand, if necessary.

When implementing a set of paths P , three options are possible. 1) P can be
implemented as it is and in this case, the edge simplicity should be verified for the
set P . 2) P cannot be implemented without implementing unintended paths, i.e.,
a superset of P is implemented. In this case, the condition of the edge simplicity
should be checked for this superset. If the minimal superset of P that can exist
on the data plane has cycling paths, then the set P cannot be implemented

Preventive Model-based Verification and Repairing for SDN Requests 7

(packet loops may flood the network) in the given data plane. 3) P cannot be
implemented but the minimal superset of P that can be implemented satisfies
the edge simplicity property. We further discuss how given a set P of paths, a
corresponding switch configuration is specified and given a switch configuration,
which paths are induced by this configuration.

Complete paths induce switch rules When implementing rules for a complete
path (for the given traffic type) α · a · b · c · β where a, b, c ∈ V, α, β ∈ V ∗, we
need a rule (a, b, c), i.e., a switch b once getting a packet belonging to this traffic
type from the neighbor a has to send it to the neighbor c. Formally, the set P
of paths induces the set P↓ of rules:
∀a ∈ V, b ∈ S, c ∈ V, α ∈ V ∗, β ∈ V ∗
α · a · b · c · β ∈ P implies that there is a rule (a, b, c) ∈ P↓.

Switch rules induce paths The rule (a, b, c) induces a path a · b · c of length 2. If
there is a path α ·x · y and there is a rule (x, y, z) then there is a path α ·x · y · z.
Formally, a switch configuration P↓ induces the set of complete paths, written
P↓↑:
∀bj ∈ V
(a1, b1, b2), (b1, b2, b3), . . . , (bn−1, bn, a2) ∈ P ↓ where a1 and a2 are the only

hosts, there is a path a1 · b1 · b2 . . . · bn−1 · bn · a2 in P↓↑.
By definition, the set P↓↑ has only complete paths. By the definition of P↓

and P↓↑, the following statement holds.

Proposition 1. Given a switch b, for each rule (a, b, c) ∈ P ↓ of this switch,
there is a path α · a · b · c · β ∈ P↓↑ for some α and β.

We now discuss the features of the set P↓↑. If there are two paths α · x · y · β
and α′ · x · y · β′ in the set P↓↑ of complete paths, then according to the above
rules, there are paths α · x · y · β′ and α′ · x · y · β. Consider the case when α and
α′ are not empty, i.e., x is a switch. If β and β′ are not empty then according
to the prefix of the path, switch x, once getting a packet passed the path α or
the path α′, sends the packet to switch y. According to the postfix, switch y,
once getting a packet from switch x, sends it to the starting point of the paths
β and β′, and the packet passes the paths β and β′. If β and β′ are empty, then
y is a host and the packet passes both paths α · x · y and α′ · x · y Therefore, the
following statement holds.

Proposition 2. Given a switch configuration P↓, P↓ induces the set of complete
paths P↓↑ with the following features:
∀α, α′, β, β′ ∈ V ∗
α · x · y · β ∈ P↓↑ & α′ · x · y · β′ ∈ P↓↑ =⇒ α · x · y · β′ ∈ P↓↑.

According to Proposition 2, the set of data paths on the data plane induced
by the given set P is exactly P↓↑, and in fact, it is the actual set of paths that
gets implemented when requesting to implement the set P .

8 I. Burdonov et al.

The set P of complete paths is closed with respect to a given arc (x, y) if for
each two paths α ·x · y ·β and α′ ·x · y ·β′ of the set P which have a common arc
(x, y), paths α · x · y · β′ and α′ · x · y · β are also in P . The set P of paths is arc
closed if P is closed w.r.t. each arc over the set E. Given a set P of complete
paths, the arc closure of P is the smallest arc closed set of complete paths that
contains P .

According to the definition of an arc closed set and Proposition 2, the fol-
lowing statement can be established.

Proposition 3. Given a set P of complete paths, the set P↓↑ is the arc closure
of P .

Corollary 1. The set P↓↑ coincides with P if and only if P is arc closed.

Corollary 2. If P has only edge simple paths and is arc closed then P ↓↑ has
only edge simple paths.

According to Corollary 1, the set P can be implemented on the data plane (up
to the equality relation) if and only if P is arc closed, i.e., Corollary 1 establishes
necessary and sufficient conditions for the precise implementation of set P on
the data plane (without additional ‘undesired’ paths).

If P is not arc closed then P cannot be implemented on the data plane (up
to the equality relation). Moreover, sometimes P cannot be implemented on the
data plane at all as its arc closure has some cycling paths. Figure 1 shows an
example when the set P has two edge simple paths α and β from initial host
h0 to the final host h1 (left of the figure), the set of rules induced by this set is
shown at the bottom and an induced path γ of the set P↓↑ is illustrated at the
right. The path is not edge simple, and this example illustrates that cycles can
occur even when paths of the set P are simple.

s1 s2 s3 h1

h0 s4 s5 s6

Paths to be
implemented:

α

β

An induced
path:

γ

s1 s2 s3 h1

h0 s4 s5 s6

P ={α = h0 · s1 · s2 · s3 · s4 · s5 · s6 · h1, β = h0 · s1 · s4 · s5 · s2 · s3 · s6 · h1}
P↓={(h0, s1, s2), (s1, s2, s3), (s2, s3, s4), (s3, s4, s5), (s4, s5, s6), (s5, s6, h1),

(h0, s1, s4), (s1, s4, s5), (s4, s5, s2), (s5, s2, s3), (s2, s3, s6), (s3, s6, h1)}
γ =h0 · s1 · s2 · s3 · s4 · s5 · s2 · s3 · s4 · s5 · . . . · s2 · s3 · s4 · s5 · s6 · h1 ∈ P↓↑

Fig. 1. Induced (cyclic) paths occurrence

Similar to P , all the paths of the set P ↓↑ are complete paths. However, if
P ↓↑ is a proper superset of P then we have to check whether all the paths of
the set P↓↑ are edge simple. If it is the case then the set P can be implemented

Preventive Model-based Verification and Repairing for SDN Requests 9

on the data plane up to the set P↓↑ (i.e., with additional unspecified paths from
P↓↑ \P). If it is not the case then the set P should be modified and this issue
is discussed in Section 6.

From the practical point of view, perhaps the most interesting application
is when some set P↓↑ of paths is already implemented on the data plane and a
new request arrives; either a request A to add new paths (P ∪ A) or a request
R to remove paths (P \ R) to / from the original set. In this case, the same
check should be performed on ((P ∪A) \R)↓↑ before implementing / removing
paths, guaranteeing the implementability of the augmented set of paths. Algo-
rithm 1 summarizes the necessary verification steps (Section 5) and returns the
corresponding verdict about the implementability of a given set of paths.

4.2 Practical / Experimental motivation

It is worth noting that though the approach presented above is theoretical, the
implications for real SDN frameworks are substantial. Indeed, if two loopless
paths can induce (infinitely) more paths, the performance and security of such
frameworks can be highly compromised. In order to verify if our (fundamental)
findings can occur in real SDN framework implementations, an experimental
evaluation was performed.

Experiments were carried in a virtual machine running GNU/Linux CentOS
7.6 with 8 vCPUs and 16GB of RAM. The Onos [1] SDN controller (version
4.2.8) was installed via a Docker [12] container. To emulate the SDN data-plane,
the Containernet [14] was also installed through a Docker container.

The paths shown in Figure 1 were configured independently, successful com-
munication from h0 to h1 was discovered using the data path discovery tool
presented in [15] and the discovered paths are shown in Figure 2. As can be
seen, there is no problem while configuring both paths independently. When
both paths were configured simultaneously, the loop was effectively produced. A
single packet sent from h0 to h1 produced infinitely many of them. In Figure 3,
we show the packet dump (using the well-known utility tcpdump) as seen by
h1. Note that, the packet sent is an ICMP echo request (using the ping utility),
and the sequence ID is always 1, as the single packet gets copied infinitely many
times. When continuously sending the packets the network rapidly degraded
until the whole infrastructure became unusable.

These experiments confirm the importance of our findings. Indeed, it is
important to provide SDN frameworks with verification tools before rules are
pushed to the switches. One of the procedures for such verification is given in
Algorithm 1. Note that, Corollary 1 provides a criterion for effective verification
of the set of paths P . However, for that matter the P↓↑ (the arc closure of P)
needs to be derived as well, and this issue is discussed in the next section.

5 Checking the arc closure

In this section, we propose an algorithm for checking if a given set of paths
P induces unintended paths, i.e., a superset of P is implemented (when P is

10 I. Burdonov et al.

α

β

Fig. 2. Discovered data-paths (α and β)

Fig. 3. Packet capture showing an infinite loop in the experimental infrastructure

intended); likewise, we discuss how to detect potential cycles induced by the
implementation of P .

Algorithm 1 shows the verification steps necessary to check the arc closure
of a given set of paths. Given the set P of complete paths in the graph G, we
construct a directed graph D(P). Vertices of D(P) are arcs of paths from P and
there is an arc ((a, b), (b, c)) in D(P) if and only if P has a path α · a · b · c · β
where α and β are not empty sequences. There are two special nodes in D(P),
the initial node source, and the final node sink. Since P contains only complete
paths, in the graph D(P), there is an edge from the source vertex to a head pair
(a, b) of each path where a is a host, while there is an edge to the sink node from
the tail pair (c, d) of each path, where d is a host. The path source · (h1, s2) · (s2,
s3) · . . . · (sm−1, hm) · sink in the graph D(P) starting at the source vertex and
ending at the sink vertex corresponds to the complete path h1·s2·s3·. . .·sm−1·hm
in the graph G where h1 and hm are hosts. The set of such complete paths in the
graph G, corresponding to the paths in the graph D(P) from source to sink, is
precisely the closure of the set P . If the number of such paths in D(P) is greater
than the cardinality of the set P , this means that the closure expands the set P .
The detailed verification procedure is shown in Algorithm 1 and Proposition 4
(valid by construction) establishes the correctness of the algorithm. Note that
the algorithm always terminates due to the finite calculations in nested loops,
independently if P↓↑ contains a path with a loop or not.

Proposition 4. Algorithm 1 returns the verdict True if and only if P is arc
closed.

Preventive Model-based Verification and Repairing for SDN Requests 11

Algorithm 1: Verifying if the set of paths P is arc closed

Input : A set P of edge simple complete paths
Output: A verdict whether the set P is arc closed
Derive a subset Q = {q1, . . . , qk} of P that contains all the paths of length
greater than two; we denote as kj the length of a path qj , j ∈ {1, . . . , k};

Derive a graph D(P) =< D,E > for the set Q where the vertices of D(P) are
pairs of vertices of the paths in Q;
D = {source, sink}; E = ∅;
j = 0;
while j < k do

j + +; D = D ∪ {(qj(1), qj(2)), (qj(kj), qj(kj + 1))};
E = E ∪ {(source, (qj(1), qj(2)), (qj(kj), qj(kj + 1)), sink)};
m = 2;
while m < kj + 1 do

D = D ∪ {(qj(m), qj(m+ 1))};
E = E ∪ {((qj(m− 1), qj(m)), (qj(m), qj(m+ 1)))};
m+ +;

if the number of paths in D(P) from source to sink is greater than k then
return False;

return True;

Consider the example in Figure 1, the graph D(P) constructed by Algo-
rithm 1 is the following. The set of vertices is {source, (h0, s1), (s1, s2), (s1,
s4), (s2, s3), (s5, s2), (s3, s4), (s3, s6), (s4, s5), (s5, s6), (s6, h1), sink} and the cor-
responding graph is shown in Figure 4. By direct inspection one can assure that
there is a cycle (s2, s3), (s3, s4), (s4, s5), (s5, s2) in the graph and thus, the num-
ber of paths from the vertex source to the vertex sink is infinite, i.e., is bigger
than the number two of paths in the set P , and therefore, the set P is not arc
closed as it is demonstrated in Figure 1.

Proposition 5. The complexity of checking the absence of cycles for a given set
of paths P is O(L + |V |3) where |V | is the number of nodes in G and L is the
sum of the lengths of the paths in P .

Proof. The complexity of constructing the graph D(P) is O(L) where L is the
sum of the lengths of the paths from P . In order to check for (infinite) loops,
the absence of oriented cycles in the graph D(P) needs to be checked, which
is done through a topological sort (e.g., using depth first search (DFS) [5]).
DFS-algorithm can also be used for computing the number of paths from the
source to the sink node when there are no cycles. The running time of the depth
first search algorithm on the graph D(P) is evaluated as O(m), where m is the
number of arcs of the graph D(P), m ≤ |V |3.

12 I. Burdonov et al.

source

(h0, s1) (s1, s2) (s2, s3)

(s1, s4)

(s3, s4)

(s3, s6)

(s5, s2)

(s4, s5) (s6, h1)

sink

(s5, s6)

Fig. 4. Graph D(P) for verifying the set of paths P

6 Debugging and Repairing a set of paths

In this section, we discuss some possibilities of correcting / modifying the set
of paths P whenever this set is not arc closed. One first needs to identify the
reason, i.e., a subset of paths that destroy the corresponding property, and the
set of paths P should be either augmented with new paths or on the contrary,
certain paths should be deleted from the set P . In both ways, the resulting
subset becomes arc closed and thus, can be implemented on the data plane
without any additional links. We later on refer to this process as automatic P
debugging and repairing. We note, that such repairing process can have various
objectives, such as for example: minimization of the number of paths to be
excluded / included from / to P , maximization of a host to host connectivity in
the resulting set of paths, minimization of the number of changes in the paths
of the set, minimization of virtual links on the data plane, etc. We furthermore
discuss some of the possibilities listed above and propose various debugging and
repairing strategies.

6.1 Minimizing the set of paths to be excluded / included from /
to P

Given a set P of complete paths, let P = {p1, . . . , pk}, i.e., k = |P |, and ki =
|pi|− 1, i.e., ki is the length of pi for all i ∈ {1, . . . , k}. The problems we address
in this subsection are the following: how to delete / add a minimal number of
paths from / to the set P , such that the resulting subset / superset becomes arc
closed.

We say that two different paths pi and pj of P are incompatible if there exists
a common arc, i.e., there exist u ∈ {1, . . . , ki − 1} and v ∈ {1, . . . , kj − 1} such

Preventive Model-based Verification and Repairing for SDN Requests 13

that pi(u) = pj(v) & pi(u+ 1) = pj(v+ 1) while a path pi(1) · . . . · pi(u) · pj(v+
1) · . . . · pj(kj + 1) or a path pj(1) · . . . · pj(v) · pi(u+ 1) · . . . · pi(ki + 1) is not in P .
In this case, one can also say that pi and pj are incompatible w.r.t. the common
arc (a, b) = pi(u), pi(u + 1). If pi and pj of P are not incompatible, then they
are compatible.

The problem of deleting a minimal number of paths can be reduced to the
well known maximum independent set problem. For that matter, we propose to
derive an un-directed graph G(P) in the following way: the nodes of the graph
correspond to the paths of the set P . There is an arc between pi and pj , i 6= j,
in the graph G(P) if the paths pi and pj are incompatible.

Given an un-directed graph G(P), note that a subset of nodes which are not
pairwise connected is an independent subset of nodes. Therefore, by construction,
the following proposition holds.

Proposition 6. An independent subset of nodes of graph G(P) is an arc closed
set.

Corollary 3. A subset of P is arc closed if and only if it is an independent
subset of the graph G(P).

Therefore, the problem of minimizing the set of paths to be excluded from
P is reduced to the derivation of a maximal independent subset of nodes in
G(P). Note that this problem is known to be NP-hard, and thus the repairing
approach can be more complex than that one presented for the verification itself
(Section 5).

As an example, consider again the paths of the set P in Figure 1. Note that
the paths from P possess the necessary feature, i.e., they have a common arc
(s2, s3) with the above property and the set P has no path h0 · s1 · s2 · s3 · s4 · s5 ·
s2 ·s3 ·s4 ·s5 ·s6 ·h1. Therefore, the corresponding vertices in G(P) are connected,
i.e., P is not arc closed and only the singletons {α} or {β} are arc closed.

For deriving a minimal superset of P that is arc closed, the graph D(P)
derived in the previous subsection can be used. If the graph returned by Al-
gorithm 1 has no cycles then the set of all paths from the source node to the
sink node is the smallest superset of P that is arc closed. Correspondingly, the
following statement holds.

Proposition 7. 1. If all the paths from the source node to the sink node in
G(P) are edge simple then the set of all paths is the smallest superset of P that
is arc closed. 2. If there a path from the source node to the sink node in G(P)
that is not edge simple then there is no finite superset of P that is arc closed.

Note that in case 2, it is not possible to add paths to the given set P ; the
set P can be only reduced as it is discussed at the beginning of the subsection.
Indeed, it is exactly the case for the set P in Figure 1.

6.2 Minimizing the number of arc changes in the set P

Consider a set P of edge simple complete paths that is not arc closed, the ques-
tion arises: can the paths of the set be minimally corrected (w.r.t. the number of

14 I. Burdonov et al.

arcs) in order to get an arc closed set preserving the head and tail hosts of each
path? In this section, we propose a simple way for modifying a single edge or a
sub-path of a path using edges of the RNCT graph G which were not utilized in
the paths of P (the set N in Algorithm 2).

Algorithm 2: Repairing via modifying an edge or a sub-path preserving
the head and tail hosts of the path

Input : A set P of edge-simple complete paths that is not arc closed, a
non-empty set N of edges between switches of the RNCT graph G
which are not used in the paths of the set P

Output: A verdict False if paths cannot be modified, or a modified arc closed
set P where the head and tail vertices of each modified path p′j
coincide with those of the initial path pj of P

Q = {p1};
j = 2;
while j ≤ |P | do

p′j = pj ;
l = 1;
while l ≤ |Q| do

p = ql;
if paths p and p′j are incompatible w.r.t. P then

if N = ∅ then
return False;

else
while the paths p and p′j are incompatible w.r.t. the common arc
(s1, s2) do

if the paths p and p′j have a common sub-path
s3 · α · s1 · s2 · β · s4 and (s3, s4) is in N then

Derive p′j by replacing a sub-path s3 · α · s1 · s2 · β · s4 in
p′j by a sub-path s3 · s4;

Delete (s3, s4) from the set N ;
else if There is a switch s3 such that (s1, s3), (s3, s2) ∈ N
then

Derive p′j by replacing a sub-path s1 · s2 in p by a
sub-path s1 · s3 · s2;

Delete (s1, s3) and (s3, s2) from the set N ;

else
return False;

l + +;

Add p′j to the set Q;
j + +;

return an arc closed set Q = {p1, p′2, . . . , p′k}

By construction, the following statement holds.

Preventive Model-based Verification and Repairing for SDN Requests 15

Proposition 8. Given a set P of edge-simple complete paths, if Algorithm 2
returns a set Q = {p1, p′2, . . . , p′k} then this set is arc closed and for each j ∈ {1,
. . . , k}, the head and tail vertices of p′j coincide with those of pj.

Note that the set of repaired paths returned by Algorithm 2 has only edge
simple paths, since every time only unused links are utilized for the replacement.
For the same reason, this set is arc closed. Moreover, we consider only simple
heuristics for repairing a path; note as well that the result significantly depends
on the order of the paths in P . More research is needed to propose more rigor-
ous conditions for repairing a set of initial paths that is not arc closed. Those
conditions can be related to certain properties as the link load distribution and
thus, could re-direct some packets, for example, for traffic optimization.

As an example, consider again the paths in Figure 1, assuming that each
pair of switches is connected in the RNCT G. These paths have a common arc
(s4, s5) that can be replaced by a path s4 · s6 · s5. After this modification the
paths have a common arc (s2, s3) that can be replaced by a path s2 · s4 · s3.
Thus, we obtain an arc closed set of paths P ′ = {h0 · s1 · s2 · s3 · s4 · s5 · s6 · h1,
h0 · s1 · s4 · s6 · s5 · s2 · s4 · s3 · s6 · h1}.

7 Conclusion

In this paper, we discussed some implementability issues for a given set of paths
on an SDN data plane. We showed that for a fixed traffic type, whenever the
requested set contains only edge simple paths, more (unintended) paths can
still be implemented on the data plane, and some of those can create cycles,
i.e., infinite packet loops. We therefore established the necessary and sufficient
conditions for a set of requested paths to be implemented without any undesired
connections and hence, potential loops. Our preventive verification approach is
based on the analysis of the set of paths to be arc closed that in fact guarantees
its ‘clean’ (exact) implementability; this can be useful for guaranteeing that
new (requested) and preexisting paths form valid configurations. The estimated
(polynomial w.r.t. the total paths length) complexity of the proposed approach
makes believing in its applicability for large scale virtual networks. At the same
time, for a set of paths that cannot be implemented directly on the data plane, we
proposed a debugging and repairing approaches for correcting the initial request,
such that the resulting set becomes arc closed.

As future work, we plan to extend the proposed approaches abstracting from
a given traffic type, i.e., considering sets of paths that share certain parame-
ters of the packet header. Complexity issues in this case form maybe the main
challenge, and thus we plan to study certain properties of various headers parti-
tioning to check the implementability of a given set of paths. Moreover, it can be
interesting to consider other kinds of specifications for user requests, such as for
example, given pairs of hosts to be connected on the data plane, one needs to face
the implementability challenges again. Finally, we also plan to verify different
functional and non-functional properties of the set of paths to be implemented,
for example, to check security / isolation issues.

16 I. Burdonov et al.

References

1. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B.,
O’Connor, B., Radoslavov, P., Snow, W., et al.: Onos: towards an open, distributed
sdn os. In: Proceedings of the third workshop on Hot topics in software defined
networking. pp. 1–6. ACM (2014)

2. Berriri, A., López, J., Kushik, N., Yevtushenko, N., Zeghlache, D.: Towards model
based testing for software defined networks. In: Proceedings of the 13th Interna-
tional Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE 2018, Funchal, Madeira, Portugal, March 23-24, 2018. pp. 440–446 (2018).
https://doi.org/10.5220/0006805604400446

3. Boufkhad, Y., De La Paz, R., Linguaglossa, L., Mathieu, F., Perino, D., Viennot, L.:
Forwarding tables verification through representative header sets. arXiv preprint
arXiv:1601.07002 (2016)

4. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to test
openflow applications. In: Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12). pp. 127–140 (2012)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2009)

6. David, L., Stefano, V., Olivier, B.: Towards test-driven software defined network-
ing. In: 2014 IEEE Network Operations and Management Symposium. pp. 1–9
(2014). https://doi.org/10.1109/NOMS.2014.6838225

7. Dobrescu, M., Argyraki, K.: Toward a verifiable software dataplane. In: Proceed-
ings of the Twelfth ACM Workshop on Hot Topics in Networks. p. 18. ACM (2013)

8. Fayaz, S.K., Yu, T., Tobioka, Y., Chaki, S., Sekar, V.: BUZZ: Testing context-
dependent policies in stateful networks. In: 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16). pp. 275–289 (2016)

9. Kozierok, C.M.: The TCP/IP guide: a comprehensive, illustrated Internet protocols
reference. No Starch Press (2005)

10. López, J., Kushik, N., Berriri, A., Yevtushenko, N., Zeghlache, D.: Test derivation
for sdn-enabled switches: A logic circuit based approach. In: Testing Software and
Systems - 30th IFIP WG 6.1 International Conference, ICTSS 2018, Cádiz, Spain,
October 1-3, 2018, Proceedings. pp. 69–84 (2018). https://doi.org/10.1007/978-3-
319-99927-2 7

11. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P., King, S.T.: Debugging
the data plane with anteater. ACM SIGCOMM Computer Communication Review
41(4), 290–301 (2011)

12. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux journal 2014(239), 2 (2014)

13. Opennetworking: Software-defined networking: The new norm for networks. ONF
White Paper (2012), https://www.opennetworking.org

14. Peuster, M., Kampmeyer, J., Karl, H.: Containernet 2.0: A rapid prototyping plat-
form for hybrid service function chains. In: 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). pp. 335–337. IEEE (2018)

15. Reyes, J., López, J., Zeghlache, D.: Identifying running data-paths in software de-
fined networking driven data-planes. In: 18th IEEE International Symposium on
Network Computing and Applications, NCA 2019, Cambridge, MA, USA, Septem-
ber 26-28, 2019. pp. 1–8 (2019). https://doi.org/10.1109/NCA.2019.8935031

https://doi.org/10.5220/0006805604400446
https://doi.org/10.1109/NOMS.2014.6838225
https://doi.org/10.1007/978-3-319-99927-2_7
https://doi.org/10.1007/978-3-319-99927-2_7
https://www.opennetworking.org
https://doi.org/10.1109/NCA.2019.8935031

Preventive Model-based Verification and Repairing for SDN Requests 17

16. Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D., Finnegan, J.,
Viljoen, N., Miller, M., Rao, N.: Are we ready for sdn? implementation chal-
lenges for software-defined networks. IEEE Communications Magazine 51(7), 36–
43 (2013)

17. Specification, O.S.: Version 1.5. 0. Open Networking Foundation (2015)
18. Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., Raiciu, C.: Debugging

P4 programs with vera. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018. pp. 518–532 (2018). https://doi.org/10.1145/3230543.3230548

19. Yao, J., Wang, Z., Yin, X., Shiyz, X., Wu, J.: Formal modeling and systematic
black-box testing of sdn data plane. In: The IEEE 22nd International Conference
on Network Protocols (ICNP). pp. 179–190 (2014)

20. Yevtushenko, N., Burdonov, I.B., Kossachev, A., López, J., Kushik, N., Zegh-
lache, D.: Test derivation for the software defined networking platforms: Novel
fault models and test completeness. In: 2018 IEEE East-West Design & Test Sym-
posium, EWDTS 2018, Kazan, Russia, September 14-17, 2018. pp. 1–6 (2018).
https://doi.org/10.1109/EWDTS.2018.8524712

21. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: Automatic test packet gener-
ation. In: Proceedings of the 8th international conference on Emerging networking
experiments and technologies. pp. 241–252. ACM (2012)

https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1109/EWDTS.2018.8524712

	Preventive Model-based Verification and Repairing for SDN Requests

